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Density fluctuations in 2D systems of irreversibly adsorbed particles were studied. Analytical
expressions were derived connecting the magnitude of these fluctuétioasacterized by the
reduced variancer®) with the available surface functiogp and the isotropic pair correlation
function gy. Limiting expansions in terms of power series of the dimensionless covéragge

also derived. The range of validity of these expressions was determined by performing numerical
simulations based on the random sequential adsorgR&#) model. Calculations ofy(r), go(s),

¢, anda? were performed for hard circles and hard ellipses characterized by aspedt=r&iand

5. It was deduced that the simulation results can well be accounted for by the theoretical predictions
stemming both from the RSA and equilibrium models. 1©®97 American Institute of Physics.
[S0021-960607)51233-5

I. INTRODUCTION create the unique possibility to verify by direct observations
in situ various aspects of the statistical mechanical ap-
Interactions of macromolecules, colloid, and bioparticlesproaches.
(proteins, enzymes, viruses, bacteria, Jetdth solid-liquid In contrast to the fairly good knowledge of the RSA
interface leading to adsorption and adhesion are of praCtiCzrocesses for spheres, the case of anisotropic particles has
significance for polymer and colloid science, biophysics, ancarcely been studied. fi'* adsorption of cubeémore pre-
medicine en_abling a better understanding and control of varigisely squargsand cylinders(rectangles was investigated
ous separation processes. theoretically. Talbotet all® determined in terms of the
In comparison with molecular system adsorption of vonte Carlo RSA simulations the jamming concentrations,
these particles is complicated by many factors most noticeand adsorption kinetics of ellipses wherea€-isimilar cal-
ably their shape anisotropy and irreversibility due to specifiylations aimed at determining the ASF function and jam-
interactions with the interfaCég.g Also the external and hy' m|ng concentrations for rectang'eS, e”ipseS, and Spherocy|_
drodynamic force fields may influence adsorption, especiallynders were performed. These authors also formulated
for larger particle$:” asymptotic expressions describing adsorption kinetics in the
On the other hand, the model colloidal systems are atfimit of low and high surface concentrations. The kinetics of
tractive for experimental studies since they can be directiyydsorption of prolate spheroidsllipse$ interacting via the
observed as individual entities under an optical microscopescreened electrostatic potential was recently studied in Ref.
In this way both adsorption kinetics, pair correlation func-1g.
tions, and fluctuation in particle number density over various |t seems that no results are available in the literature
surfaces can be determined for spherically shape@oncerning the density fluctuations in this system and their
particles>*’~*These experiments were interpreted usually inreation to the isotropic radial distribution function. This
terms of theoretical approaches based on various mutatiorgould be the goal of our paper in which we perform explicit
of the random sequential adsorptiRSA) model;°**ex-  calculations in terms of the MC-RSA model for the 2D ad-
cept for dense particlésf size above micrometgfor which  sorption of hard spheroidgéellipses. A comparison with
the ballistic model was found more appropriéte. equilibrium system is also carried out in order to determine
The essence of the RSA approach consist in assumingye range of coincidence of density fluctuations in reversible
that particles are adsorbing sequentially and irreversibly aing irreversiblgRSA) systems.
available surface areas at surfaces of isotropic properties;
when an adsorbing particle meets an area occupied by any
preadsorbed particles it is rejected; the next adsorption a{; pENSITY ELUCTUATION FORMULAE
tempt is entirely uncorrelated with any of the previous ones. o ]
The RSA model is especially appealing because not too higft- Fluctuation in irreversible systems
surface concentrations predicts results indistinguishable from  Consider a macroscopic adsorption plane characterized
the equilibrium models, especially the available surfacepy the geometrical surface are®; much larger than particle
function (ASF) ¢. In this way, the model colloid systems cross-section ared,, so the boundary effects could be ne-
glected. Let us assume that due to some random and isotro-

dAuthor to whom correspondence should be addressed.(Baxt? 25 19 pic adsorption mechanisms a I_arge numbérof particles
23. Electronic mail: ncadamcz@cyf.-kr.edu.pl was accumulated at the adsorption plane. Hence the averaged
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2D particle densityp equalsM/A= 6/A,, wherefd=p Ay is  erned by the available surface functiohSF) ¢ introduced
the dimensionless surface concentration of adsorbed particlésy Widom'® which is equal one fov=0 and decreases to

(coveragg zero in irreversiblg§RSA) processes when the limitingam-
Consider now a subsystem chosen randomly somewhereing) surface coverage is approached.
at the adsorption plane whose surface are®As Denote by Exploiting the concept of ASF and using the maximum

g the conditional probability that there are exacdy par-  term method, it was shown in Ref. 9 that the reduced vari-
ticles overAA (where N,=0) provided that there aré anceoZ/(Np):E2 is given by the expression
particles adsorbed ovek. Obviously q should depend on

Np, M, and the ratioAA/A. The variance ofN, is then e ¢ _ 1 , (5)
given by the defining equation b—0 d¢ 146 duir /KT
de dé
UZ:NpEBO (Np=(Np)*a=(Np) = (N5 D where
where(N,)=3N,q is the averaged number of particles over ~ u;;=—kT In ¢ (6)

AA and( ) denotes the averaging procedure.

Explicit evaluation ofc? requires a knowledge of
which can be calculated analytically for some Markoff pro-
cesses where adsorption events are uncorrelated, i.e., particle
adsorption probability at a given point is independent on ¢:e_”“"/kT:eXF{—f
preadsorbed particle positions. This would correspond to the
low-density regime of irreversible RSA® and ballistic ad- Equation(5) is useful for calculating density fluctuations
sorption mechanismis or the dilute gas model of reversible because many series expansions and interpolating functions
systems. In this limitg is given in the general case by the for ¢ exist in the literature. Thus, the low-density expansions

can formally be treated as the irreversible potential.
One can invert Eq(6) to calculateg, i.e.,

diné

. (7)

==

binomial distribution for RSA processes of convex particles assume the fottn
M\ [AA\N[  AAIM~Np
= J— - =1- Cc,o". 8
A(Np.M) (Np)( A) ~ (2 $=1-23 C, ®
where The C,—C; constants related to the virial coefficients were
M M1 calculated analytically for spherical particles in 2disk9'!
) = and they assume the form
Np/ ™ (M=Np)IN!
is the number of combinations for which particle configura- 1= % €2~ —6:3/m, 9)
tion remains_unchange(aﬂndis_tinguishable particles Ca=40/m J3— 176/372= — 1.407.
Substituting the expression far into Eq. (1) one can
derive foro? the simple formula For convex particles onlyC; can be expressed
analytically’® as
- AA(l AA) il AA) ytically
=M ——|1-—F1|=p - p2
A A A C,=2+ , (10)
A 2mSy
:<Np>( 1- T) (3 whereP is the perimeter of the particle.

. . Ricci et al!’ calculated the remainin€,—C; coeffi-
Where(Np>szf‘ is the averaged number of particles over cients numerically for ellipses, cylinders, and spherocylin-
AA. Note thato“ does not depend explicitely dvl . ders. On the other hand, ti& —C, constants for interacting

~ In the limit whenAA/A—0 (while M is kept large the  particles(Yukawa type potentiaiwere calculated in Ref. 18.
binomial distribution reduces to the well-known Poisson dis-  gypstituting the series expansion E8).into Eq.(5) one

tribution, i.e., can deduce that in the limit of low density the reduced vari-
" <Np>Np . @ ance is given by the expression
= = —e P’
a=P(Np) =~ | G7=1-C,0—2C,02— (3C3—C1Cyp) 63+ - --O(6%).

Using Eq.(1) one obtainsU2=<Np> (this can also be de- 1D
duced from Eq(3) in the limit AA/A—0). For low coverages this agrees with the the result of Schaaf
As mentioned above, the Poisson distribution is expecteét al?* who deduced that?= ¢ in the limit of low densities.

to describe well the situation when the probability of succes-  Equation(11) has a practical significance because it in-
sive adsorption events remains independent of the number dicates that by measuring fluctuations in particle der($ity
particle already present at the surface. This condition is oblow 6) one can determine the, = 2B, constan{whereB, is
viously violated for larger coverage# due to the surface the second virial coefficientwhich has a natural physical
exclusion effects. The adsorption probability is then gov-interpretation as the averaged surface area excluded by one
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particle. This in turn enables one to estimate the range of
interaction between adsorbed particles and adsorption kinet-

ics (governed bye) for low coverages.

B. Equilibrium systems

Since the properties of a RSA system should approach
the equilibrium systems in the limit of low density, we
present some useful equations characterizing fluctuations Bhen y>1

these systems.

3693

1-6)°
?:145(2—;/—)1)0' (18
The low coverage expansion of E{.8) is
0?=1-2(y+1)6+(8y—1)#>+2(3—T7y)6*
+---0(0)*. (19

As noticed in Ref. 24, the Boublik expression for the

pressure becomes rather inaccurate for elongated particles

In this case Song and MasSrproposed the
following improved semiempirical equation:

The variance of the density fluctuations in the grand ca-

nonical ensemble are given by the known thermodynamic

relationship?
0

I

7Ny 43

F=kT®(

whereu is the chemical potential anfl is the absolute tem-
perature. Using the Gibbs—Duhem relationshigpu
=(1/p) dp (wherep is the 2D pressujeone can convert Eq.
(12) to the useful form

ap\~t [ap|?
_2: — = —
7 kT(@p) (a;j ’

wherep=KkTp/A,.

&,u,/kT) -1

90 [ ar

AT

13

Equation(13) is useful because many approximate ex-

pressions fop as a function off exist, e.g., in the form of
virial expansions

P
—=1+> B, L

14
0 n=2 ( )

By differentiating this series and substituting into Ef3)
one obtains for If? the expansion

1ig?=1+ >, nB,o" L. (15)
n=2
This can be inverted to the form
0?=1-2B,0+ (4B5—3B3) #?
+[12B,B;—4(2B3+B,) 6%+ 0(6%). (16)

SinceC,= —ZB§+§Bg one can deduce that this expansion

is identical to the expansion E¢L1) up to the termé?.

Explicit values ofB,, up to the seventh term were re-

ported in the literature for sphereg3D) and disks(2D). On

the other hand, for ellipses, cylinders, and spherocylinder:

P 1+(By—2)0+(1-Byy,) 67+ B,y,6°
0 (1—-0)?

where

(20

¥1=2—B3B;,
7221_25_352+B_452,
By=B3/B% B,=B,/B3.
Using Egs.(20) and(13) one can derive for? the fol-
lowing expression:
_ 93

—_ (1-96)

1+ (2y—1) 0+ A, 07+ Ag60°+ A, 6%

(21)

where
Ar=3[1-2(1+ )+ (1+7)?Bs],
Ag=—1+6(1+7)—9(1+7)?Bs+4(1+)3B,,
As=—2(1+7)+4(1+ y)?B3—2(1+7)°B,.

An implementation of Eqs(20) and (21) one requires
the third and fourth virial coefficients which have been cal-
culated in Refs. 17 and 24.

Using the method of Ornstein and Zerniékene can
alternatively express Eq13) via the two particle radial dis-
tribution function, in the commonly used form

?=1+2wpf [go(r)—1]dr, (22
where g is the isotropic distribution functidh®’ andr is
the center to center distance vector.

It should be mentioned that E¢R2) is also applicable
for irreversible systems, e.g., those generated in RSA pro-
gesses.

these virial coefficients were calculated up to the order of

four only 1724

Using the scaled particle theot$PT) Boublik?® derived

simple analytical expressions for the 2D pressure of arbitrary

convex particles

p_1+(y—1)6

6" a7 0

where y= P2/47-rAg is the shape parameter.
By differentiating Eq.(17) with respect tod and substi-
tuting into Eq.(13) one obtains fo? the expression

lll. SIMULATION METHOD

The RSA simulations were performed according to the
algorithm described in some detail elsewh&r&he basic
features of the model can be characterized as

(i) particles are placed at random over a square simula-
tion planeAA with periodic conditions at its bound-
ary; thex,y coordinates and the orientatienof the
particle are sampled from uniform distributions,

if the currently simulated particle overlaps with any

(i)
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previously adsorbed it is rejected with unit probability orientation was found using the method described in Ref. 18
(the Vieillard—Baron functioff was used to optimize (based on an false position solution of the nonlinear trigono-
the overlapping tegtand the simulation loop is re- metric equatioh

peated Using go(s) one can formulate Eq22) in the form
(i) otherwise, the particle is assumed irreversibly ad- "
sorbed and its coordinates and orientation are stored. %= 1—cla+pf [go(s)—1]P«(s)ds. (26)
0

In order to enhance the efficiency of the overlapping test . i o . )
a subsidiary 2D matrix was introduced containing informa-  he variance of particle distributions were determined in
tion about numbering of neighboring particles. pseudo computer experiments in yvhlch particle populations
The ASF function was calculated by stopping the ad-Of about 2<10" were simulated using the above RSA algo-
sorption simulation loop at a desired surface coverage, andthm over the quasi macroscopic surfagée maximum
then performing large number of virtual adsorption attemptCoverages attained in these simulations were 0.5 since for
N, Out of them onlyNg,. were potentially successful. larger values the computer time became prohibjtiidnen,

Then, ¢ can be approximated &é,,/N,c.in the limit when the large area was subdivided into square nonoverlapping

Ngyee— . Many independent simulations ef were aver- subsystem having the surface aea. The size of the sub-

aged in order to increase its estimation accuracy. The deriv&YStem was so adjusted that the averaged number of particles

tive of ¢ needed for Eq(7) was calculated by using subsid- found over these areasl,) was approximately equal a pre-
iary interpolating polynomials which were analytically Scribed valueiwe used 30, 60, 90, and 180 throughout our
differentiated. calculation$. Averages from many computer runs were

The isotropic radial distribution functiog, was calcu- taken in order to attain the total number of subsystems equal
lated by generating particle populations according to thet®: ) )
above RSA scheme and then using the definition The variance of particle number found over these areas
was calculated from the definition E(L). For smaller cov-
erageq #<5%) when the raticAA/A could not be kept neg-
ar 27 90(Np, (23 igibly small a correction for the binomial distribution was
introduced as described in Refs. 29 and 32.
whereN is the number of neighbors separated by the dis-  Simulations described in this work were performed for
tancer or less. Thusg, can be calculated in practice by ellipses having the major semiaxés and shorterb; their
averaging the number of particladN, found under arbitrary  ratio a/b is denoted by (in previous work&'® we used the

orientation within the ring Zrdr drawn around a central parameteA= 1/k). All calculations have been carried out for
particle, i.e., from the formula k=1 (circles, k=2, andk=5.

1/ AN
p
go(r +Ar/2)= - <2mm>- (24)  |v. RESULTS AND DISCUSSION

Additional averages from many computer runs were taken d'l_'he ;scitr:oplct:)go(s)R?: gp(r)l f?nctlon?hczlculateg ac-

(with particles adjacent to the simulation plane boundary rei(;(.)r mjg(] ° de](ab)ofve k=5 sm(;u ation me fo are shown n
jected in order to keep the overall number of particles con-. '9s. Oa) ano or 0_ and various surface coverages,
sidered forg, evaluation equal T0 i.e., 20%, 35%, and 50%. We did not attempt to compare our

As discussed in the work of Romaet al2® for finite results with the equilibrium 2D results because these seem to

particle system, thg, function deviates at larger distances not eX|st_|n the literature. As can be seen ga(as) for eIQn-
from its infinite system counterpart by an increment in.gated ellipses resembles the sphg{e) function, especially

for smaller distances and low coverages. However, the mini-

versely proportional to the total number of particles consid- - .
ered, i.e., about I¢ in our case. This assured a sufficient 4™ and the secondary peak characteristic for spheres dis-

accuracy of calculating? via integration ofg, according to appeared practically in the case of ellipses. This is even more
Eq. (22 0 apparent when thgg(r) for ellipses are concernddf. Fig.
Since for some application the pair distribution function 1(b.)]' In this case even the first peak anq hardly be distin-
expressed in terms of the surface to surface distanbas gwshe_d ‘?‘”@0 decreased almost mon otonically from one to
advantages over thgy(r) defined above we also calculated zero within a rather broad range of distances. Thusgthes

the isotropicgo(s) from the defining equatidh-which for r dependencies for ellipses are considerably less informative
the 2D situati(())n becomes than for spheres in respect to the nearest neighbor concentra-

tion.
In Figs. 2a) and 2b) the go(s) and go(r) functions
gs ~ Ps9u()p, (25 calculated fokk=2, andk=5 are collected. As the reference

state, we plotted the correspondiggfunction for spheres
where P,=2(P+ 7rs) is the orientation averaged length of (k=1).
the curve formed by rotating a particle separated by the sur- It should be noted that very similar results as that shown
face to surface distance around a central particf. The  in Figs. 1 and 2 results were reported recently for spherocyl-
minimum surface to surface distances for a given particlaénders in 2D(diskorectanglésin Ref. 27.
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FIG. 1. (a) The pair correlation functiom,(s) for hard ellipses k=5) at ~ FIG. 2. (8) The gy(s) function and(b) the go(r) function for hard ellipses
various surface coverages: =50%, 2.#=35%, 3.6=20%. (b) The pair with various elongation. k=1 (spheres 2. k=2, 3.k=5, 6=50%.
correlation functiongo(r) (hard ellipsesk=5), 1. 6=50%, 2.6=35%, 3.

6=20%.

The isotropic correlation functions were used for deter-notice in this Fig. the reduced variance derived from com-
mining the reduced variance by using E82). First it was  puter experiments is dependent on the averaged number of
checked if the upper integration limit,,, (which must re-  particles(N,) adsorbed on the small aréaA. This behavior
main finite in any numerical integratiprexerted any influ-  was first detected by Senget al®? and Romaret al?® who
ence on the calculatee?. It has been found that the integral attributed this to the fact that particle positions within the
became practically insensitive an,, when it was chosen small area are not statistically equivalent, i.e., the entire par-
larger than eight particle radii in the case of spheres and 2.ficle population oM A can be divided into “core” and “pe-
major semiaxes in the case of ellipses. However, rigy  ripheral” particles located close to the boundary of the small
larger than these limiting values a statistical scattelr®f areaAA. According to the analysis performed in Ref. 32 and
became apparent. It should be noted that for this integratioR9 this leads to the increase in the variance described by two
limit the number of particles within the integration area wasperturbing terms vanishing aaa\&/AA)l’2 and (Ag/AA) in
negligibly small in comparison with the entire particle popu-the limit when AA—c. Thus, for largeAA the reduced
lation (10° particles as previously stateso theexplicitsize  variance is approaching the limiting value fitted by the poly-

effect€® became negligible. nomial

It has also been proved that the integration of gh€s) 83
function according to Eq(26) gave the same results as the  [Z_1_ 49+ — " 42+ 0.82493— 2.280%. (27)
integration of thegy(r) dependence. ™

The results of these calculations together with the direct As can be noticed in Fig. 3 our simulation ddtom-
determination ofa? from “computer experiments’{using  puter experimenjsseem to approach for largé\,) the val-
Eq. (1)] for hard spheres are collected in Fig. 3. As one carues derived from Eq(27). Also the results derived by inte-
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FIG. 3. The reduced variane# as a function o, open circles denote the
computer experiments fofiN,) =30, triangles for(N,)= 180, inverse tri-
angles denote the values calculated from @§) and the lines denote vari-
ous analytical approximations. 1. SPT equilibrium the@ef. 20 Eq. (18),
2. Song MasoriRef. 25 formula, Eq.(21), 3. Equation(5), 4. Sengeet al.
(Ref. 32 fitting polynomial Eg.(27), 5. Schaafet al. (Ref. 21 formula

o?=¢.

FIG. 4. Same as for Fig. 3 but for hard ellipdes 5. 1. SPT equilibrium
theory (Ref. 20 Eq. (18), 2. Song & Masor(Ref. 25 formula, Eq.(21), 3.

Equation(5), 4. Schaakt al. formula (Ref. 21) ¢?= ¢, 5. Our fitting poly-
nomial Eq.(29).

crepancy may suggest that in contrast to the ASF function,
the RSA and equilibrium correlatiogy(r) functions are dif-
ferent for all coverages except perhaps at the point of contact
(r—2a). Indeed, by assuming

grating thegy(r) or go(s) functions agree very well with Eq.
(27) for the entire range of surface coverages stud®d—
50%).

For comparison we also have plotted in Fig. 3 the curves
derived from various analytical approximations, i.e., from
Eq. (5) giving 0?=1/(1—d In ¢,s), from the Schaaét al** [where hy(r) is the first expansion coefficient of the total
theory, i.e.,0?=¢ and from the equilibrium theory ex- correlation functioil, one can deduce from E¢R2) that

ressed by Eqg18) and(21) As one can notice, the variance — 2 3
Ealculatedyfro?n the irreversible RSA model lies the same as =1-46+H(23)6"+0(6"), 28)
0 always below that predicted for the equilibrium situation. where
This is understandable considering the lower probability
(measured by the ASF functiofh) of adding a patrticle to a H— i °°h (f)r dr
RSA configuration than to the equilibrium configuration. It Ag J2a 1 '
can also be observed in Fig. 3 that the analytical formula
?=1/(1—d In ¢,y reflects the simulations for the entire Since the coefficient al? in the variance expression is dif-
range ofd. However, some small but statistically significant ferent for RSA and equilibrium situation this proves that
deviations occur for moderate and high coverage regions. IRT#hi? for r>2a.
the latter region the positive deviations of the variance de-  Similar conclusions based on the results shown in Fig. 4
rived from computer experiments from the theoretical precan be also be formulated for elongated ellipses §). In
dictions can probably be attributed to the finite size of thethis case the fitting polynomiat” was found to be:
large simulation are&, which should increase density fluc-
tuations. This hypothesis could be verified by performing
simulations using much larger sizes of the simulation plane
A. However, due to prohibitive computer times these calcu- It should be mentioned in real experiments involving
lations do not seem feasible at the present. colloid particles the small differences between various ap-

There appears also a discrepancy between the numerigatoaches discussed above cannot be detected due to, e.g.,
results and the theoretical predictions for moderate surfacparticle polidispersity or surface heterogeneity effects. Other
coverages which is more difficult to interpret. From the pos-complicating factors are stemming from the sedimentation,
tulate that the RSA and equilibrium models give identicaldiffusion, and hydrodynamic effects. However, under a cer-
expressions fowp up to the order ofg? one could deduce tain combination of relevant physicochemical parameters the
using Eqs.(11) or (16) that the numerical results should be RSA case can be realized as demonstrated in recent experi-
well fitted for low and moderate coverages by the polyno-ments reported elsewhériavolving polystyrene particles of
mial 1—46+12\3/7 6° whereas in reality they are well micrometer size range adsorbing on mica from electrolyte
described by the polynomial-146+8./3/7 6. This dis-  solutions.

go(r)=1+hy(r)8+0(6?)

0?=1-2B,0+13.989°+ 5.418°— 58.869*+ 57.3%°.
(29)
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